Fourier expansions of arithmetical functions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fourier Expansions of Functions with Bounded Variation of Several Variables

In the first part of the paper we establish the pointwise convergence as t → +∞ for convolution operators ∫ Rd tdK (ty)φ(x− y)dy under the assumptions that φ(y) has integrable derivatives up to an order α and that |K(y)| ≤ c (1 + |y|)−β with α+β > d. We also estimate the Hausdorff dimension of the set where divergence may occur. In particular, when the kernel is the Fourier transform of a bound...

متن کامل

Arithmetical Functions I: Multiplicative Functions

Truth be told, this definition is a bit embarrassing. It would mean that taking any function from calculus whose domain contains [1,+∞) and restricting it to positive integer values, we get an arithmetical function. For instance, e −3x cos2 x+(17 log(x+1)) is an arithmetical function according to this definition, although it is, at best, dubious whether this function holds any significance in n...

متن کامل

Multivariate modified Fourier expansions

In this paper, we review recent advances in the approximation of multivariate functions using eigenfunctions of the Laplace operator subject to homogeneous Neumann boundary conditions. Such eigenfunctions are known explicitly on a variety of domains, including the d-variate cube, equilateral triangle and numerous other higher dimensional simplices. Practical construction of truncated expansions...

متن کامل

Quasi-orthogonal expansions for functions in BMO

For {φ_n(x)}, x ε [0,1] an orthonormalsystem of uniformly bounded functions, ||φ_n||_{∞}≤ M

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the American Mathematical Society

سال: 1961

ISSN: 0002-9904

DOI: 10.1090/s0002-9904-1961-10542-9